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VIBRATIONAL MODES OF TRUMPET BELLS
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We report on an investigation of the normal modes of vibration of the bells of several
modern trumpets. We describe the results of experiments using electronic speckle-pattern
interferometry to visualize the modal structure and we show that the mode frequencies
follow a generalized version of Chladni's law.
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1. INTRODUCTION

Research into the physics of musical instruments has received much attention in the past
few decades. Brass wind instruments have been of particular interest to many, and much
progress has been made toward understanding the physics of trumpets, trombones, French
horns, etc [1}4]. Naturally, most of the research concerning brass musical instruments has
been directed toward understanding the dynamics of the air column, since most aspects of
the acoustic signature of these instruments can be explained in terms of the macroscopic
parameters associated with the air column. Signi"cantly less attention has been directed
toward understanding the e!ects of the perturbations on the ideal air column caused by
vibrations of the walls and bell of the instruments.
The acoustic e!ects attributable to wall and bell vibrations of brass wind instruments are

signi"cantly less important than those e!ects attributable to the macroscopic features of the
air column such as the shape of the instrument's bell. However, musicians and instrument
makers almost universally claim that small changes in the material properties of the bell
result in noticeable changes in the sound of the instrument. Within the scienti"c community,
there is con#icting evidence concerning the importance of bell vibrations and the material
parameters that may a!ect them [5}14].
If we are to understand the signi"cance of the vibrations of the bell in the acoustic

signature of brass instruments we believe that we must "rst understand the bell vibrations
themselves, beginning with an understanding of the normal modes of vibration of the bell
and the frequencies associated with them. In addition to assisting in understanding the
acoustic signi"cance of bell vibrations, an understanding of the vibrational characteristics
may lend some insight into the bells themselves, possibly leading to some useful method of
classi"cation.
There have been limited experimental investigations into the nature of the vibrations of

brass instrument bells in the past [7, 9, 11, 13, 14]. Most investigations published to date
appear to have been conducted on the bells of trombones; however, it is likely that to within
a reasonably good approximation the bells of all brass musical instruments have similar
characteristics. This being the case, we have investigated the vibrational characteristics of
trumpet bells and we believe that our fundamental conclusions may be extrapolated to the
bells of other brass wind instruments.
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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Here, we report on an experimental investigation of the vibrational modes of the bells of
several modern trumpets. Among other things, we report that that the modes are well
described by Bessel functions projected onto the bell; that knowing the frequencies of only
a few of the modes allows one to predict the remaining modes without recourse to extensive
mathematical analysis; and that trumpet bells can be characterized by three parameters
unique to each bell.

2. EXPERIMENT

In order to investigate the vibrational modes of modern trumpets, we observe the bell
vibrations in real time using electronic speckle-pattern interferometry (ESPI) [15]. The
trumpet under investigation is mounted on a vibration-isolated optical table inside an
anechoic chamber. The laser used to illuminate the trumpet is a continuous-wave,
frequency-doubled, solid-state laser with a wavelength of 532 nm. The laser is mounted on
a vibration-isolated table outside of the chamber and the light enters the chamber through
a small hole in the wall.
The ESPI system is constructed from discrete optical components that are mounted on

the same optical table as the musical instrument. The beam enters the chamber and is then
split into two beams using a half-wave plate and a polarizing beam splitter. One beam,
termed the object beam, is directed toward the instrument under study. The second beam,
termed the reference beam, is directed toward a delay leg. Light from the object beam is
re#ected o! the instrument under study and collected by a lens system. The lens system is
designed to image the instrument under study onto a two-dimensional CCD array;
however, a beam splitter is inserted between the "nal lens of the system and the CCD array.
After traversing the delay leg the reference beam is spatially "ltered, enlarged, and projected
onto the CCD array via the beam splitter within the lens system. The image of the
interference pattern created by the two beams on the CCD array is transferred to
a computer outside of the chamber where real-time image subtraction produces an image of
the instrument, where only the vibrating portions are visible. Since the image capture
system operates at a standard video rate of 30 Hz and the lowest vibrational mode of most
modern trumpets appears to be well above this frequency, the ESPI image is always the
result of an average of many oscillations of the bell.
In contrast to some previously reported investigations of the bells of brass instruments,

our investigations of bell vibrations are performed with the bell attached to the instrument.
In our experiments, we excite the bell vibrations by attaching a small speaker to the
mouthpiece of the instrument and drive the oscillations with a high-quality signal
generator. Several experiments have shown that the bell vibrations are independent of the
resonances of the air column of the instrument, and indeed similar results are obtained
regardless of the con"guration of the instrument's valves.
Typical results from our ESPI experiments are shown in the right three columns in

Figure 1 (the "rst column will be addressed later). In the second column of Figure 1, the bell
of a modern trumpet is shown end-on as it is vibrating in several of its normal modes. The
light areas occur where the bell is vibrating; the dark areas indicate nodes. The third and
fourth columns are images of the same bell driven at the same frequency viewed from the
back and side respectively. By viewing the bell from three di!erent perspectives, we can
unambiguously determine the mode structure and classify the mode in the usual manner by
designating the number of nodal meridians and nodal circles. Using this notation, the bell in
"rst row of Figure 1 is vibrating in the (2,1) mode. Using ESPI in this manner, we have
visually determined the normal-mode vibrational frequencies and patterns of several
modern trumpets.



Figure 1. ESPI images of several normal modes of a modern trumpet bell alongside the calculated vibrational
pattern for each. The "rst frame is the calculated mode pattern, the following frames are ESPI images of the front,
back and side of the bell vibrating in that mode. In each case, the value of � necessary to calculate the correct
pattern was determined by visually matching the computed modal structure with the ESPI images. The value of
� in each case was determined to be 0)32$0)01.
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Before progressing to an analysis of the vibrational patterns of the trumpet bell, it is
useful to note some general observations that we have made after studying the bells of
several di!erent trumpets. These observations derive from analyzing the bells of trumpets
ranging in quality from extremely poor to professional.
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The "rst general observation is that most of the vibrational modes that are easily excited
appear to be circularly symmetric. Also, most of the modes that can be excited in all bells are
identical, however, there are some exceptions and not all modes can be excited in all
trumpet bells. Observations of many modal patterns on many di!erent bells indicate that
there is no obvious boundary to the vibrations, but they seldom extend past the bell brace.
Somemodes extend only half-way between the rim of the bell and the bell brace, while some
patterns extend all the way from the rim to slightly beyond the bell brace. Finally, we have
found that most vibrational patterns rotate with a slight change in frequency as is common
in structures with slightly imperfect circular symmetry.

3. THEORY

Since the bells of brass instruments are not described by a simple mathematical function,
calculating the vibrational modes of actual bells has proven to be quite di$cult. The
equations of motion of the surface of the bells are not mathematically tractable, and there
appear to be no closed-form solutions. This being the case, researchers have turned to "nite
element analysis in an attempt to understand the vibrations of actual bells with some
success [7, 16]. We have chosen to approach the modelling of the bell vibrations using
a perturbative approach instead.
From numerous observations of the modal patterns of the bells of many trumpets, we

believe that the fundamental modal patterns are well described by Bessel functions
projected onto the bell shape. Since the normal vibrational modes of #at circular plates are
described by Bessel functions, we have searched for a description of the fundamental modes
by modelling the trumpet bell as a distorted circular plate. Using this logic, we assume the
normal-mode solutions are simply perturbed solutions of those of a #at circular plate.
The equations describing the vibrations of a #at circular plate are well known, as are their

solutions [17]. Assuming that the plate is thin, the solutions to the equation of motion for
#exural waves in a plate are combinations of ordinary and hyperbolic Bessel functions. The
angular solutions are either sine or cosine functions. In the laboratory, we have been unable
to isolate any mode that compares well with the solutions containing the hyperbolic Bessel
functions. Indeed, all experimentally realizable normal modes compare very well with the
Bessel functions of the "rst kind, and while we cannot eliminate the modi"ed Bessel
functions on theoretical grounds, based on experimental evidence we will not consider them
in this analysis. We, therefore, take the ordinary Bessel functions as the pertinent part of the
solution and write the amplitude of vibration as

A(r, �)"BJ
�
(kr) cos(m�), (1)

where J
�
is the Bessel function of order m, r is the radial co-ordinate, and k and B are

constants.
Naturally, the choice of the cosine function over the sine function for the angular term is

arbitrary.We assume that the quasi-degenerate modes referred to earlier (i.e., similar modes
of di!erent angular orientation separated in frequency by only a few Hertz) are indicative of
the presence of both sets of modes.
The boundary conditions that are applicable to the bell of a brass wind instrument are

not obvious, and may be unknowable in detail. Without knowledge of the appropriate
boundary conditions, we cannot accurately calculate the allowable values of the constant k,
and therefore predicting the fundamental frequencies of vibration appears to be an
intractable problem. To overcome this problem, we have chosen to visually match the
observed vibrational patterns to Bessel functions and determine the appropriate values of k.



TRUMPET BELLS 781
Experimentally determining the value of k in this manner allows us to search for
a functional form that may lead to a predictive ability and eventually to an understanding of
the boundary conditions.
If the instrument bell were indeed a #at circular plate, the values of the constant k for all

of the fundamental modes would obey the equation

k"�� f , (2)

where � is a constant, although only an analysis of the boundary conditions will reveal the
correct values of the normal frequencies of vibration. We will address the prediction of the
correct modal frequencies later; however, it is reasonable to assume that the dispersion
relation for the #exural waves in the instrument bell will approximate equation (2). We,
therefore, assume that the dispersion relation for the bell of a brass instrument may be
a perturbation on equation (2) and can conveniently be written as

k"C(r, f )� f ,

where C(r, f ) is some function that is dependent upon both the frequency and the distance
from the axis of the bell. This functional form for k enables the subtle distortion of the Bessel
function with distance from the center of the bell as well as a perturbation on the normal
dispersion relation.

4. ANALYSIS

As noted above, we have determined the frequencies and the modal patterns of several
modern trumpet bells. By visually determining the number of nodal meridians, the order of
the appropriate Bessel function is easily determined, and the value of k can be determined
by visually matching the patterns to two-dimensional plots of Bessel functions.
Since the Bessel functions (with the modi"ed wave number dependent upon both

frequency and position) must be visualized as being projected onto the complex shape of the
instrument bell there can be some ambiguity in determining the most accurate "t to the
data. However, by comparing the three views of the bell with a two-dimensional plot of the
modelling function it is possible to achieve an excellent "t to the data in every case.
An extensive modelling e!ort was undertaken to determine the form of the function

C(r, f ) that resulted in the most accurate "t to the actual bell vibrations. Initially, a search
was made to "nd the radial dependence of k. It was discovered that the best-"t to the data
occurred when the function was independent of r. That is, an ordinary Bessel function of
order m was determined to be an excellent "t to each of the fundamental mode patterns.
Likewise, an excellent "t to the data was achieved when the wave number was dependent
only upon the square root of the frequency. Thus, equation (2) is an accurate description of
the relationship between the wave number k and the frequency; however, the value of � is
very di!erent from that of a thin, #at, circular plate.
Figure 1 shows several of the modes of a trumpet along with the calculated vibrational

pattern for each. The instrument in this case was described by an instrument retailer as
a top-level amateur or low-level professional instrument. The value of � was determined to
be 0)32$0)01. A search of the literature discloses that the relationship between the
frequencies of these modes is not consistent with those of a #at plate that is either free,
clamped, or simply supported at the edge.
Since it appears that trumpet bells can be modelled as #at, circular plates, it is logical to

ask if the fundamental modes mimic those of #at plates in other ways. For example, it is well



TABLE 1

¹ypical mode structure and resonant frequencies of a modern trumpet bell. ¹he modes are
designated by the number of nodal meridians and nodal circles (m, n)

m n f (Hz)

2 1 537
2 2 1018
3 2� 1207
3 2 1416
4 2� 1854
4 2 2201
5 3� 2628
5 3 2986
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known that the modal frequencies of #at plates follow Chladni's law, which states that the
e!ect on the frequency of adding a node bisecting the axis of the bell (nodal diameter) is
approximately equal to that of adding two circular nodes. Indeed, it has been shown that
the modal frequencies of some curved percussion instruments follow Chladni's law quite
well, and it has even been shown to apply to the vibrational modes of many bells [18}20]. In
its most general form, Chladni's law can be written as

f
��

"� (m#bn)�, (3)

where m and n are the number of nodal diameters and nodal circles, respectively, f
��
is the

frequency of the mode (m, n), and �, b and � are constants. The value of � and b are both
approximately 2 for a #at plate.
The modes that can be excited within the playable frequency range of a typical B-#at

trumpet are shown in Table 1. Note that most modes have two resonant frequencies
associated with them, with the exceptions being the (2, 1) and (2, 2) modes. When two modes
have the same number of nodal lines and circles but occur at signi"cantly di!erent
frequencies, the position of the nodal circles with respect to the end of the bell di!er between
the two.
The presence of more than one frequency being associated with a single mode is familiar

from the study of carillons, church bells and hand bells. In these instruments, only modes
with a single nodal circle exhibit this redundancy and the modes with the node near the
sound bow are denoted by the symbol �. For example, mode (3, 1) has three nodal
meridians and one nodal circle near the waist of the bell while mode (3, 1�) has three nodal
meridians and one nodal circle near the sound bow [20].
An examination of Figure 1 shows that the modes of a trumpet bell can also be divided

into modes with antinodes near the rim of the bell and modes with nodes near the rim.
Following the established notation used in bells, we have annotated modes with nodes near
the rim of the bell with� and classify them as &&shell-driven modes''. Modes with antinodes
near the rim of the bell will be referred to as &&ring-driven modes''. (The use of these terms
may not be in keeping with their original meaning; however, in the interest of continuity
with the rest of the community, we will use them to refer to the di!erent modal structures.)
After establishing the mode numbers, equation (3) can be "t to the data from any given

bell and a reasonable approximation to a linear relationship between the predicted and
measured frequencies can be established. The data are "t to equation (3) by allowing �, b and
� to be free parameters while minimizing the di!erence between the calculated frequencies
and the measured frequencies. Typical results of "tting the modal frequencies of a trumpet
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Figure 2. Typical results of "tting the modal frequencies of a trumpet bell to equation (3). The line results from
a linear regression of the data. The symbols are larger than the uncertainty in the measurements.

0

0

1000

2000

3000

0

1000

2000

3000

th
eo

re
tic

al
 f

re
qu

en
cy

 (
H

z)

th
eo

re
tic

al
 f

re
qu

en
cy

 (
H

z)

measured frequency (Hz)
1000 2000 3000 0

measured frequency (Hz)
1000 2000 3000

(a) (b)

Figure 3. Typical results of "tting only the shell-drivenmodes (a) and only the ring-drivenmodes (b) to equation
(3).The lines result from a linear regression of the data. The symbols are larger than the uncertainty in the
measurements.
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bell to equation (3) are shown in Figure 2, where the frequencies predicted by "tting the data
to equation (3) are plotted versus the measured frequencies. The line resulting from
performing a linear regression on the data is also shown in Figure 2. Note that while there is
generally good agreement between the predictions of equation (3) and the experimental
results, and the data indicate a signi"cant measure of linearity, there is considerable
deviation from linearity for several points. A close examination of the data indicates that the
data can be collected into two independent groups that each follow Chladni's law quite well:
one group is made up of modes with nodes near the rim (shell-driven modes) and one group
is made up of modes with antinodes near the rim (ring-driven modes).
By separating the two types of modes prior to "tting the data to equation (3), an excellent

agreement between Chladni's law and the data can be shown; Figure 3 demonstrates this.
Figure 3(a) shows the frequencies of the shell-driven modes "t to equation (3) while
Figure 3(b) shows the ring-drivenmodes "t to equation (3). The small number of ring-driven
modes exhibited by this particular trumpet is typical and can lead one to question the
importance of the linear "t to the data. However, we have observed one trumpet that
exhibits a larger number of ring-driven modes than shell-driven modes. In this case, as in all
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Figure 4. Data from six di!erent trumpets "t individually to equation (3). The manufacturer and models are
shown in Table 2 along with the "tting parameters. The line results from a linear regression of the data and has
a slope of 1)00$0)02. The symbols are larger than the uncertainty in the measurements.

TABLE 2

¹he parameters used to ,t modal frequencies to Chladni1s law for six di+erent trumpets.Modes
with nodes near the rim of the bell are termed shell-driven modes, while modes with antinodes

near the rim are referred to as ring-driven modes

Model � (Hz) b �

Shell-driven modes

King legend 36 1)69 1)99
King silver #air 56 1)29 1)79
Conn 20B 71 2)12 1)51

Besson M800-2 (�1) 81 1)24 1)62
Besson M800-2 (�2) 97 0)95 1)58
Besson M800-2 (�3) 79 1)14 1)60

Ring-driven modes

King legend 1927 !1)31 0)45
King silver #air 800 !0)678 1)07
Conn 20B 260 !0)133 1)64

Besson M800-2 (�1) 324 !0)106 1)44
Besson M800-2 (�2) 308 !0)103 1)44
Besson M800-2 (�3) 312 !0)114 1)42
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cases, when a linear regression is performed on the frequencies of only the ring-driven
modes, the slope of a line "t to the predicted versus measured frequencies is found to be
unity with an uncertainty (0)2%.
Figure 4 shows the data from the bells of six di!erent trumpets from varying

manufactures. In each case the data from each instrument was individually "t to equation (3).
The make and model of the trumpets are shown in Table 2 along with the values of the
parameters �, b and �. A linear regression of the collective data reveals a slope of
0)99$0)01.
When comparing the bells of di!erent instruments, it is di$cult to quantify the important

physical di!erences in a meaningful way. This di$culty is primarily due to the fact that
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much of the manufacturing process is accomplished by hand. Also, there are signi"cant
variations in manufacturing technique between models and manufacturers. Finally, there is
no known mathematical description for the curves of the mandrels used to form the bells.
The shapes of these mandrels are individually designed and often vary only slightly between
models. The characterization is complicated by the di!erent techniques that are used to
form the bells and attach them to the rest of the instrument.
The thickness of the metal used to form the bell is clearly an important parameter in

determining the vibrational characteristics; however, in the shaping process the metal is
deformed to such an extent that the thickness can vary signi"cantly with position. One
easily measured parameter that is useful for the purposes of identi"cation is the diameter of
the bell at the rim. This information is routinely provided by the manufacturer; however, we
have found that many bells with signi"cantly varying vibrational characteristics have
identical rim diameters.
All of the bells listed in Table 2 have a nominal wall thickness of 0)020 in. The rim

diameters of the bells of the instruments shown in Table 2 are 4)875 in except for the Besson
model, which has a bell diameter of 4)75 in. Given the similar physical measurements and
the widely varying parameters required to "t equation (3), we believe that the most
important aspect of the bell in determining the modal structure is the shape of the bell,
which as noted above is extremely di$cult to quantify.
Given the variation in manufacturing details between instruments it is logical to ask if the

values of �, b and � can in some way be used to identify and characterize individual trumpet
bells. In order for such a characterization to be useful, the values of these parameters must
be relatively constant among similar bells. That is, the parameters �, b and � must be
sensitive enough to characterize individual bell shapes, but insensitive enough so that the
values are similar for bells with only very minor variations. In order to test the sensitivity of
these parameters, three trumpets of the same model were evaluated. An examination of
Table 2 reveals that the parameters associated with the three trumpets are very similar to
each other and dissimilar to all of the other trumpets tested. These results indicate that it
may be possible to use the parameters �, b and � in some way to characterize and identify
bells, and it is logical to attempt to de"ne a single parameter that will uniquely characterize
each bell. From our study, it appears that the value of either � or � may be signi"cant
enough to uniquely characterize a speci"c bell design.
The parameter � is the theoretical frequency of the (1, 0) mode according to equation (3),

and it is conceivable that this parameter is so dependent upon the fundamental design of the
bell that it will su$ce as a characterization of the bell. Unfortunately, to give any of these
parameters meaning it is necessary to understand the e!ect that changing individual
properties of the bell has on their value; we currently lack this understanding and until
a much more detailed study can be performed, we will not attempt to capture the
uniqueness of a bell in a single parameter.

5. CONCLUSIONS

In conclusion, we have shown that the fundamental vibrational modes of the bells of
trumpets, and presumably many other brass wind instruments, are very similar to those of
a #at circular plate. While the complex boundary conditions make it di$cult to predict the
resonant frequencies of the bells, these frequencies can be accurately described using
a general form of Chladni's law.
We have also proposed that the parameters associated with "tting the modal frequencies

to Chladni's law may be su$cient to uniquely characterize the individual bells of brass wind
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instruments. Speci"cally, the predicted value of the frequency of the (1,0) mode may
characterize any particular bell design.
We have not addressed how the bell vibrations of brass wind instruments a!ect the

acoustic signature of the instrument. We have merely attempted to characterize and
understand the vibrational characteristics of these complex structures. Having determined
the fundamental nature of the vibrational modes of brass instrument bells, we are currently
attempting to understand how the bell vibrations enter into the larger picture of the musical
acoustics of brass wind instruments.
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